межгосударственный стандарт

Единая система защиты от коррозии и старения

ПОКРЫТИЯ ЛАКОКРАСОЧНЫЕ

Метод определения режима горячей сушки

ΓΟCT 9.405—83

Unified system of corrosion and ageing protection. Paint coatings. Method for determination of hot drying conditions

МКС 25.220.60 87.020 ОКСТУ 0009

Дата введения 01.07.84

Настоящий стандарт устанавливает метод определения режима горячей сушки (конвективной, терморадиационной, терморадиационно-конвективной) лакокрасочных покрытий (далее — покрытия) на изделиях из черных и цветных металлов и их сплавов с толщиной стенок не более 15 мм.

Сущность метода заключается в определении режима сушки покрытия на образцах в лабораторных условиях и пересчете с помощью универсальной диаграммы на режим сушки покрытия изделия в производственных условиях.

Для проведения испытаний разрабатывают программу испытаний, в которой указывают порядок проведения работ, предполагаемый диапазон температур и продолжительностей сушки, материал образцов, их форму и размеры, способ подготовки поверхности, приборы и аппаратуру для оценки качества покрытий и др.

1. ТРЕБОВАНИЯ К ОБРАЗЦАМ

- 1.1. Материал образцов, число, форму и размеры устанавливают в программе испытаний. Толщина образцов должна быть 0,8—1 мм.
- 1.2. Технология получения покрытия на образцах должна соответствовать технологии получения покрытия на изделии.
- 1.3. Толщина покрытия на образцах должна быть равномерной и не отличаться от толщины покрытия изделия более чем на 10~%.
- 1.4. Для определения коэффициента теплообмена и температуры сушки применяют образцы с термопарой или без термопары.
 - 1.5. Образцы с оборотной стороны должны иметь маркировку.

2. АППАРАТУРА И МАТЕРИАЛЫ

Сушильные установки, снабженные приборами контроля и автоматического поддержания заданных параметров: температуры и скорости воздуха, температуры облучателей и образцов.

Потенциометры типа КСП-4 и другие.

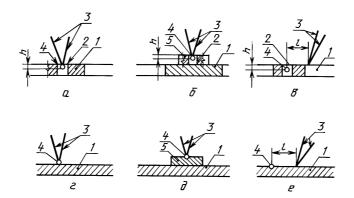
Термометр контактный типа ТПК (ТК6) по ГОСТ 9871 с магнитной регулировкой.

Анемометр ручной крыльчатый и чашечный типа А по ГОСТ 6376.

Толщиномеры типов МТ-41НЦ, ВТ-50НЦ, МТ-50НЦ и другие с погрешностью не более 10%. Микрометр по ГОСТ 4381.

Лакокрасочные материалы по стандартам или техническим условиям.

(Измененная редакция, Изм. № 1).


Издание официальное

Перепечатка воспрещена

3. ПОДГОТОВКА К ИСПЫТАНИЯМ

3.1. К образцам или пластинам из металла с большим коэффициентом теплопроводности прикрепляют термопару с помощью зачеканивания черт. 1 a, δ , θ , или сварки (пайки) черт. 1 ϵ , δ , e.

I — образец; 2 — заклепка; 3 — электроды термопары; 4 — спай термопары; 5 — металлическая пластина

Черт. 1

Площадь пластины должна быть 20×30 мм, толщина 1-2 мм.

Диаметр термоэлектродов (d) не должен превышать 0,5 мм.

Глубина зачеканивания термопары (h) не должна превышать 1 мм.

Длина прокладки термоэлектродов (*l*) на поверхности образца должна быть равна 150—200 *d*. Закрепление термопары в соответствии с черт. 1 *в*, *е* дает наиболее точные результаты.

- 3.2. На образцы наносят лакокрасочный материал.
- 3.3. Окрашенные образцы до помещения их в сушильную установку выдерживают в условиях, соответствующих условиям выдержки окрашенного изделия.
- 3.4. Устанавливают режим работы сушильной установки в соответствии с программой испытаний.
- 3.5. Рядом с образцами, которые не имеют термопары, помещают пластину с закрепленной термопарой.

(Измененная редакция, Изм. № 1).

3.6. Для определения коэффициента теплообмена сушильной установки образец (изделие) нагревают в сушильной установке, фиксируя его температуру через определенные промежутки времени до момента достижения им постоянной температуры.

4. ПРОВЕДЕНИЕ ИСПЫТАНИЙ

4.1. Образцы помещают в сушильную установку на теплоизолирующие подставки после установления заданного режима.

Способ подвода тепла к образцу должен быть аналогичен способу подвода тепла к изделию.

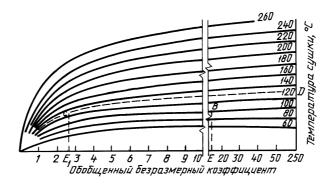
- 4.2. Образцы сушат при пяти различных значениях температуры с интервалами 10—20 °C, начиная с минимальной температуры, и различных продолжительностях.
- 4.3. За минимальную температуру сушки покрытия и максимальную продолжительность принимают температуру и продолжительность, установленные в стандартах или технических условиях на испытуемый лакокрасочный материал.
- 4.4. После сушки образцы извлекают из сушильной установки, выдерживают при температуре (20 ± 2) °C и относительной влажности (65 ± 5) % в течение 3 ч, если иное не указано в стандартах или технических условиях на лакокрасочный материал, и проводят оценку качества покрытия.

С. 3 ГОСТ 9.405-83

5. ОБРАБОТКА РЕЗУЛЬТАТОВ

5.1. Коэффициент теплообмена (α), Bт/($\mathrm{M}^2\cdot {}^\circ\mathrm{C}$), при нагреве образца (изделия) в сушильной упаковке вычисляют по формуле

$$\alpha = 3 \cdot \frac{c \rho}{\sigma \tau}$$
,


- где 3 безразмерный коэффициент;
 - c удельная теплоемкость материала образца (изделия), Дж/ (кг · °С);
 - ρ плотность материала образца (изделия), кг/м³;
 - σ отношение поверхности образца (изделия), участвующей в конвективном теплообмене, к объему образца (изделия), м²/м³;
 - т продолжительность нагрева образца (изделия) до постоянной температуры, с.
- 5.2. Оценку качества покрытия (твердость, адгезию, эластичность и др.) проводят в соответствии с требованиями стандартов на конкретный метод испытания.
- 5.3. За режим сушки образцов принимают температуру и продолжительность, обеспечивающие получение заданного показателя качества покрытия.
- 5.4. Пример определения числа измерений, необходимых для обеспечения требуемой точности определения физико-механических свойств и других показателей качества покрытия, приведен в приложении 1.
- 5.5. Вычисляют значение обобщенного безразмерного коэффициента (А), характеризующего условия сушки покрытия образца, по формуле

$$A = \frac{\alpha \sigma \tau}{c \rho} ,$$

- где α коэффициент теплообмена при нагреве образца в сушильной установке, вычисленный по формуле п. 5.1, $Bt/(M^2 \cdot {}^{\circ}C)$;
 - σ отношение поверхности образца, участвующей в конвективном обмене, к объему образца, M^2/M^3 ;
 - т продолжительность сушки покрытия до заданной степени высыхания, с;
 - c удельная теплоемкость материала образца, Дж/ (кг · °С);
 - ρ плотность материала образца, кг/м³.
- 5.6. Вычисляют значение обобщенного безразмерного коэффициента (A_1) , характеризующего условия сушки покрытия изделия, по формуле

$$A_1 = \frac{\alpha_1 \,\sigma_1 \,\tau_1}{c \,\rho} \,,$$

- где α_1 коэффициент теплообмена при нагреве изделия в сушильной установке, вычисленный по формуле п. 5.1, Bt/ (м² · °C);
 - σ_1 отношение поверхности изделия, участвующей в конвективном обмене, к объему изделия, ${\sf m}^2/{\sf m}^3;$
 - au_1 продолжительность сушки покрытия изделия, определяемая параметрами технологического оборудования, с;
 - c удельная теплоемкость материала изделия, Дж/(кг · °C);
 - ρ плотность материала изделия, кг/м³.
- 5.7. Температуру сушки покрытия изделия определяют по универсальной диаграмме, приведенной на черт. 2.

Черт. 2

Через точку E, значение которой соответствует обобщенному безразмерному коэффициенту A, проводят прямую, параллельную оси ординат до пересечения в точке B с кривой, соответствующей температуре, установленной по п. 5.3.

Через точку B проводят прямую, параллельную оси абсцисс.

Через точку E_1 , значение которой соответствует обобщенному безразмерному коэффициенту A_1 , восстанавливают перпендикуляр до пересечения с прямой, параллельной оси абсцисс в точке C. Через точку C интерполируют кривую до пересечения с осью ординат, точка D.

Численное значение температуры, полученное на оси ординат в точке D, уменьшают на значение поправки (K), учитывающей неравномерность нагрева изделия, по толщине и значение поправки (K_1), учитывающей высыхание покрытия при остывании изделия после извлечения его из сушильной установки, по таблице.

Поправ-	Значение поправки, $\%$, при отношении коэффициента A к A_1									
ка	2	3	4	5	6	7	8	9	10	15
K	4	6	8	10	12	14	16	17	18	20
K_1	2	3	4	5	6	7	8	9	10	15

5.8. Пример расчета температуры сушки изделия приведен в приложении 2.

6. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 6.1. При изготовлении образцов для испытаний и при проведении испытаний должны соблюдаться требования пожарной безопасности и промышленной санитарии в соответствии с требованиями ГОСТ 12.3.005.
- 6.2. Метеорологические условия и содержание вредных примесей в рабочей зоне помещений не должны превышать норм, установленных ГОСТ 12.1.005.
- 6.3. Электробезопасность при испытаниях должна обеспечиваться в соответствии с действующими «Правилами техники безопасности при эксплуатации электроустановок потребителем», утвержденными Госэнергонадзором.

ПРИМЕР ОПРЕДЕЛЕНИЯ ЧИСЛА ИЗМЕРЕНИЙ

1. Необходимое число измерений (п) вычисляют по формуле

$$n=t^2\,\frac{\sigma_0^2}{\delta^2}\,,$$

где t — критерий Стьюдента;

 σ^0 — значение дисперсии случайной величины;

δ — необходимая точность оценки измерения.

2. Значение дисперсии случайной величины вычисляют по формуле

$$\sigma_0^2 = \frac{\sigma_1^2 + \sigma_2^2}{2} ,$$

где σ_1 — значение дисперсии случайной величины в первой выборке;

 σ_2 — значение дисперсии случайной величины во второй выборке.

3. Значение критерии Стьюдента (*t*) при различных доверительных вероятностях табулированы и приведены в табл. 1.

Таблица 1

Доверительная вероятность $\left(\frac{P}{2}\right)$	Значение критерия Стьюдента (t)	Доверительная вероятность $\left(\frac{P}{2}\right)$	Значение критерия Стьюдента (t)		
0,450	1,64	0,475	1,96		
0,455	1,70	0,480	2,05		
0,460	1,75	0,485	2,18		
0,465	1,81	0,490	2,32		
0,470	1,88	0,495	2,57		

4. В качестве примера вычислим число параллельных измерений при оценке твердости покрытия по ГОСТ 5233 на основе эмали МЛ-12. Результаты измерений приведены в табл. 2.

Таблица 2

Твер-		Первая выборка			Твер-		Вторая выборка				
дость покрытия в условных единицах H_i	Число повто- рений n_i	$n_i \cdot H_i$	$H_i - \overline{H}$	$(H_i - \overline{H})^2$	$\Sigma (H_i - \overline{H})^2$	дость покрытия в условных единицах H_i	Число повторений n_i	$n_i \cdot H_i$	$H_i - \overline{H}$	$(H_i - \overline{H})^2$	$\Sigma(H_i - \overline{H})^2$
0,525	1	0,525	0,017	0,000289	0,000289	0,430	2	0,860	0,032	0,001024	0,002048
0,520	1	0,520	0,012	0,000144	0,000144	0,425	1	0,425	0,027	0,000729	0,000729
0,510	5	2,550	0,002	0,000004	0,000020	0,410	4	1,640	0,012	0,000144	0,000576
0,505	4	2,200	-0,003	0,000009	0,000036	0,400	4	1,600	0,002	0,000004	0,000016
0,495	4	1,980	-0,013	0,000169	0,000676	0,395	3	1,185	-0,003	0,000009	0,000027
0,485	3	1,455	-0,023	0,000529	0,001587	0,380	2	0,760	-0,018	0,000324	0,000648
0,475	1	0,475	-0,033	0,001089	0,001089	0,375	3	1,125	-0,023	0,000529	0,001587
0,465	1	0,465	-0,043	0,001849	0,001849	0,365	1	0,365	-0,033	0,001089	0,001089
	Σ20	Σ10,170			Σ0,005690		Σ20	Σ7,960			Σ0,006720

5. Для первой выборки оценку математического ожидания вычисляют по формуле

$$\overline{H}_1 = \frac{\sum_{i=1}^{n} H_i}{n} = \frac{10,170}{20} = 0,508;$$

дисперсию по формуле

$$\sigma_1^2 = \frac{1}{n-1} \times \Sigma (H_i - \overline{H}) = \frac{0.005690}{19} = 0.000299.$$

6. Для второй выборки оценку математического ожидания вычисляют по формуле

$$\overline{H}_2 = \frac{\sum_{i=1}^{n} H_i}{n} = \frac{7,960}{20} = 0,398;$$

дисперсию по формуле

$$\sigma_2^2 = \frac{1}{n-1} \times \Sigma (X - \overline{H}) = \frac{0,006720}{19} = 0,000354.$$

7. Среднеарифметическое заданных оценок дисперсии равно

$$\sigma_0^2 = \frac{\sigma_1^2 + \sigma_2^2}{2} = \frac{0,000299 + 0,000354}{2} = 0,000326 \ .$$

- 8. Твердость покрытия в данном примере должна быть вычислена с точностью $\delta = 0.015$ и доверительной вероятностью P = 0.95.
 - 9. По табл. 1 находят значение критерия Стьюдента (t) при доверительной вероятности $\left(\frac{P}{2}\right)$, равной 0,475.
 - 10. Число параллельных определений равно

$$n = \frac{1,96^2 \cdot 0,000326}{0,015^2} = 5,6.$$

После округления получаем n = 6.

ПРИЛОЖЕНИЕ 1. (Измененная редакция, Изм. № 1).

ПРИМЕР РАСЧЕТА ТЕМПЕРАТУРЫ СУШКИ ПОКРЫТИЯ ИЗДЕЛИЯ

- 1. Требуется определить температуру сушки покрытия в терморадиационной сушильной установке при продолжительности сушки 15 мин. Толщина стенок изделия 6 мм, материал сталь, удельная теплоемкость материала 490 Дж/(кг · °C), плотность 7800 кг/м^3 .
 - 1.1. В соответствии с п. 5.3 покрытие образца сушат 15 мин при температуре 100 °C.
 - 1, 1.1. (Измененная редакция, Изм. № 1).
- 1.2. По формуле п. 5.1 вычисляют коэффициент теплообмена при сушке покрытия образца толщиной 1 мм

$$\alpha = 3 \frac{490 \cdot 7800}{2000 \cdot 197} = 29,1 \text{ BT/(M}^2 \cdot {^{\circ}\text{C}}).$$

1.3. По формуле п. 5.5 вычисляют значение обобщенного безразмерного коэффициента при сушке покрытия образца

$$A = \frac{29.1 \cdot 2000 \cdot 900}{490 \cdot 7800} = 13.7.$$

1.4. По формуле п. 5.1 вычисляют коэффициент теплообмена при сушке покрытия изделия

$$\alpha_1 = 3 \frac{490 \cdot 7800}{333,3 \cdot 965} = 35,5 \text{ BT/(M}^2 \cdot {}^{\circ}\text{C}).$$

(Измененная редакция, Изм. № 1).

1.5. По формуле п. 5.6 вычисляют значение обобщенного безразмерного коэффициента при сушке покрытия изделия

$$A_1 = \frac{35,5 \cdot 333,3 \cdot 900}{490 \cdot 7800} = 2,8.$$

2. На универсальной диаграмме (черт. 2) через точку E, соответствующую значению, полученному по п. 1.3, проводят прямую, параллельную оси ординат до пересечения в точке B с кривой, соответствующей температуре 100 °C.

Через точку В проводят прямую, параллельную оси абсцисс.

Через точку E_1 , соответствующую значению, полученному по п. 1.5, проводят перпендикуляр до пересечения с прямой, параллельной оси абсцисс в точке C. Через точку C интерполируют кривую до пересечения с осью ординат, точка \mathcal{L} . По диаграмме значение температуры в точке \mathcal{L} соответствует 130 °C.

3. Значение температуры, полученное в точке Д, снижают на значение поправок по п. 5.7.

Отношение $\frac{A}{A_1}$ равно 5, по таблице K=10 %, $K_1=5$ %, следовательно, температура сушки может быть снижена на 10 % за счет неравномерности нагрева изделия

$$130 - (130 \cdot 0.10) = 117 \,^{\circ}\text{C}$$

и на 5 % за счет остывания изделия после извлечения его из сушильной камеры

$$117 - (117 \cdot 0.05) = 112 \,^{\circ}\text{C}.$$

4. Для определения температуры сушки покрытия изделия со стенками различной толщины определяют по универсальной диаграмме значение температуры сушки покрытия отдельно для тонкой и для толстой стенок.

Значение температуры сушки покрытия изделия должно быть не менее значения температуры, определенной для тонкой стенки, и не более значения температуры, определенной для толстой стенки.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. РАЗРАБОТАН И ВНЕСЕН Министерством химической промышленности СССР
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 25.07.83 № 3434
- 3. B3AMEH OCT 6-10-412-77

4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер раздела, пункта, приложения
ΓΟCT 12.1.005—88 ΓΟCT 12.3.005—75	6.2 6.1
ΓΟCT 4381—87	Разд. 2
ΓΟCT 5233—89	Приложение 1
ΓΟCT 6376—74	Разд. 2
ΓΟCT 9871—75	Разд. 2

5. ИЗДАНИЕ с Изменением № 1, утвержденным в феврале 1992 г. (ИУС 5—92)